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INTRODUCTION  

 

In the problem of inverse radiation transport, 

measurements of particle leakages from radioactive 

source/shield systems are used to infer unknown 

parameters within the system. Recently, inverse transport 

problems in spherical source/shield geometries were 

successfully solved using two stochastic optimization 

algorithms, differential evolution (DE) [1] and mesh-

adaptive direct search (MADS) [2]. Since Ref. [2] was 

published, we have made improvements to our DE 

implementation that have further increased the method’s 

efficacy for solving inverse transport problems. This 

paper reports on these improvements.  

 

PROBLEM FORMULATION 

 

Consider spherical multilayered source/shield 

systems where the material in each layer is homogeneous 

and the source is isotropic. An example of such a  

geometry is shown in Fig. 1. Suppose that some 

parameters, such as the locations between layers or the 

enrichment of the source, are unknown and we want to 

identify these unknown quantities by analyzing the 

passive (decay) radiation leakage. This problem can be 

solved by optimization-based inverse techniques that find 

the parameter values which minimize a cost difference 

between the measured quantities of interest for the system 

and the quantities of interest calculated using a set of 

postulated parameter values. The measurements 

considered in this paper are uncollided fluxes of discrete 

gamma-ray lines at points external to the source/shield 

system. Because scattering is neglected, the scalar flux at 

each line can be computed by a ray-trace technique [3].  

We define the following cost functional to represent the 

difference between the measured and calculated values of 

the flux: 
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where    is the measured value of the flux for detector  , 

  ( ) is the value of the flux at detector   calculated 

using the postulated parameter set  ,    is the uncertainty 

associated with the measurement at detector  , and   is 

the number of detectors.  In this inverse problem, we seek 

to find a feasible global optimal solution      such that 

 (  )   ( ) for all    , where   is the feasible 

region.   

In Ref. [2], the geometry shown in Fig. 1 was used as 

a test problem. The region between 0.00 cm and    = 

8.741 cm contained a high-enriched uranium source 

(94.73% 
235

U and 5.27% 
238

U) of density 18.74 g/cm
3
.  

This was surrounded by a void between    = 8.741 cm 

and    = 12.40 cm.  A layer of lead shielding was between 

   = 12.40 cm and    = 12.90 cm and a layer of aluminum 

shielding between    = 12.90 cm and    = 13.20 cm.  

External leakage measurements of the four strongest 

emission lines of uranium (144, 186, 766, and 1001 keV) 

were the quantities of interest for the system.  It was noted 

in Ref. [2] that the MADS method was capable of solving 

an inverse transport problem in which   ,   , and    were 

unknown, but the DE method was not. 

This conclusion led us to reevaluate our 

implementation of DE. We have made modifications and 

greatly improved the performance of DE.   

 
Fig. 1. Spherical Test Geometry 1. 

 



IMPROVEMENTS TO THE DIFFERENTIAL 

EVOLUTION METHOD IMPLEMENTATION 

 

The DE method is an evolutionary algorithm based 

on a generational approach in which a population of 

solutions is evolved. A new generation of “child” 

solutions is created using information contained in the 

current, or “parent,” generation of solutions. Often, a 

maximum number of generations is specified for the 

method. In our initial implementation of DE, an 

unrealistically low number of maximum generations was 

specified, causing the method to stop running before it 

was complete. This led to the failure of the method that is 

noted in Ref. [2].   

We have also made an improvement in the strategy 

by which DE handles constraint violations. In our initial 

implementation of DE, when an unknown interface 

violated a constraint, the violation was fixed by 

constraining the solution between the parameter values of 

the parent. As an example of how this hindered 

performance of the algorithm, consider the geometry in 

Fig. 1.  Suppose that    = 8.741 cm and    = 12.40 cm are 

unknown, and suppose that    = 12.90 cm and    = 

13.20 cm are known (and thus fixed).  Further suppose 

that in the DE method a given parent has calculated 

values of    = 2.00 cm and    = 4.00 cm for the unknown 

radii.  Now suppose the child of that parent has calculated 

values of    = 13.00 cm and    = 13.40 cm, thus violating 

a constraint because they are both greater than the 

(known) value of     = 12.90 cm. In our previous 

implementation of DE, the method for fixing this 

constraint violation was to set    equal to a random value 

between 0.00 cm and the    value of the parent, or    = 

4.00 cm, thus overly constraining the child’s value of   . 

We have taken a new approach in which two random 

values are generated between 0.00 cm and 12.90 cm, with 

the smaller value being set to    and the larger to   . This 

improvement has led to enormous reductions in the time 

required to solve many problems.   

 

NUMERICAL TEST PROBLEMS 

 

The improved DE implementation was tested on two 

sets of numerical test problems. The first set is based on a 

geometry (Fig. 1) that was used in Ref. [2]. In this set, the 

first problem is taken directly from Ref. [2], where it was 

noted that DE failed, and the second and third problems 

are difficult inverse problems that our initial DE method 

also fails to solve. The second set is based on inverse 

transport problems from Ref [1]. Although the DE 

method was successful in Ref. [1], here we will show the 

enormous time reduction obtained with our improved 

method.   

Since DE is stochastic in nature, starting from 

randomly generated initial solutions and employing 

random numbers to proceed through the generational 

process, ten 10 separate DE calculations will be 

considered for each test problem in order to establish 

average behavior.    

 

Problem Set 1 Using Figure 1 
 

These three test problems and their DE results are 

summarized in Table I. 

 

Problem 1: Three Unknown Radii 

 

Consider the case in which the first three radii in 

Fig. 1 are unknown. The previous DE implementation 

failed for this problem in Ref. [2]. With the improved DE 

implementation, all 10 calculations found the correct 

parameter values to within 0.001 cm with an average run 

time of 1.96 seconds. 

This problem was run with the Levenberg-Marquardt 

method [4] with 30 random initial starting models (the 

initial population used in one run of the DE method).  

Only three of the 30 converged to within 0.01% for all 

four lines. 

 

Problem 2: Four Unknown Radii 

 

Now consider the case where all four radii in Fig. 1 

are unknown. Here we constrain the radii to all be less 

than 40 cm. A calculation using our initial 

implementation of DE required 50.65 seconds to run and 

yielded an inaccurate solution of    = 8.586 cm,    = 

11.89 cm,    = 12.39 cm, and    = 12.49 cm. All 10 

calculations of our improved DE method found the 

correct radii to within 0.001 cm with an average run time 

of 6.66 seconds.  

This problem was run with the Levenberg-Marquardt 

method [4] with 40 random initial starting models (the 

initial population used in one run of the DE method).  

Only three of the 40 converged to within 0.01% for all 

four lines. 

 

Problem 3: Three Unknown Radii and Unknown Source 

Weight Fractions 

 

In the third test problem, the first three radii and the 

weight fractions of the uranium source (94.73% 
235

U and 

5.27% 
238

U – this results in a single unknown because 

weight fractions are constrained to sum to 1.0) are 

unknown. A calculation using our initial implementation 

of DE required 58.18 seconds to run and yielded 

inaccurate values of    = 8.136 cm,    = 12.24 cm,    = 

12.74 cm, and a 
235

U weight fraction of 93.57%.  All 10 

calculations of our improved DE method found the 

correct radii to within 0.001 cm and the correct uranium 

weight fractions to within 0.01%, with an average run 

time of 5.02 seconds.   

This problem was run with the Levenberg-Marquardt 

method [4] with 50 random initial starting models (the 



initial population used in one run of the DE method).  

None of the 50 converged to within 0.01% for all four 

lines. 

 

 

Problem Set 2 Using Figure 2 
 

The second set of problems is based on the geometry 

shown in Fig. 2. The HEU source has a radius of    = 

7.00 cm and is surrounded by a void layer with radius    = 

10.00 cm, followed by a layer of aluminum shielding with 

radius    = 12.00 cm. The two test problems in this set are 

taken directly from Ref. [1]. 

These two test problems and their DE results are 

summarized in Table II.   

 

Problem 4: Two Unknown Radii and Unknown Source 

Weight Fractions 

 

In the fourth test problem,    (7.00 cm),    

(10.00 cm), and the weight fractions of the uranium 

source (94.73% 
235

U and 5.27% 
238

U) are all unknown.  

This was case 1 of Ref [1], where our initial DE method 

(referred to as DEO in Ref. [1]) successfully solved this 

problem for every trial case, but required an average of 

41.1 seconds to do so. Here, all 10 runs of the new DE 

method were also successful but required only an average 

of 2.47 seconds of run time. 

This problem was run with the Levenberg-Marquardt 

method [4] with 40 random initial starting models (the 

initial population used in one run of the DE method).  

Only 23 of the 40 converged to within 0.01% for all four 

lines. This is much better performance than in problems 1, 

2, and 3, but it is much worse than DE. 

 

Problem 5: One Unknown Radius, Unknown Source 

Weight Fractions, and Unknown Source Density 

 

Consider now a case in which    (7.00 cm), the 

weight fractions of the uranium source (94.73% 
235

U and 

5.27% 
238

U), and the density of the uranium source 

(18.74 g/cm
3
) are unknown. This was case 2 of Ref. [1], 

where all runs of the original DE method were successful, 

with an average run time of 34.20 seconds. Here, all 10 

runs of the new DE method were also successful but with 

an average run time of just 2.40 seconds. 

This problem was run with the Levenberg-Marquardt 

method [4] with 40 random initial starting models (the 

initial population used in one run of the DE method).  

Only 23 of the 40 converged to within 0.01% for all four 

lines. 

 

 

TABLE I. DE Results for Problem Set 1 

Problem 
Unknown 

Quantities 

Percent of 

Successful 

DE Trials 

Average 

Run Time 

(seconds) 

1 

    8.741 cm 

    12.40 cm 

    12.90 cm 

100% 1.96 

2 

    8.741 cm 

    12.40 cm 

    12.90 cm 

    13.20 cm 

100% 6.66 

3 

    8.741 cm 

    12.40 cm 

    12.90 cm 
235

U  = 94.73% 

100% 5.02 

 

 
Fig. 2. Spherical Test Geometry 2. 

 

TABLE II. DE Results for Problem Set 2 

Problem 
Unknown 

Quantities 

Average 

Run Time 

for Initial 

DE Method 

(seconds) 

Average Run 

Time for 

Improved DE 

Method 

(seconds) 

4 

   = 7.00 cm 

   = 10.00 cm 
235

U  = 94.73% 

41.11 2.47 

5 

   = 7.00 cm 
235

U  = 94.73% 

 ( ) = 18.74     

g/cm
3
 

34.20 2.40 

 



SUMMARY AND CONCLUSIONS 

 

Recently, the differential evolution method was 

applied to solve inverse transport problems. Since our 

initial results were published, we have made 

improvements to our implementation of this method that 

have resulted in significant improvements over our 

previous results. In this paper, we have shown that the DE 

method went from being unable to solve some inverse 

transport problems to solving those problems with 

average run times of less than 7 seconds. We have also 

applied DE to two problems in which our old 

implementation was successful. For these problems, the 

improved method runs 15–20 times faster than the 

original method.   

We compared our DE implementation with our 

Marquardt implementation for these problems. This is not 

necessarily an equitable comparison because the methods 

are so different. For example, the Marquardt method is 

extremely sensitive to the initial model, but DE is not.  

Nevertheless, our recent implementation of DE very 

clearly outperforms Marquardt for these problems, in 

which the initial model is essentially random.  

Marquardt’s performance would improve if the initial 

model were constrained. 
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