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INTRODUCTION  

 

Recently, inverse transport problems in spherical and 

cylindrical source/shield systems have been successfully 

solved using various optimization algorithms, including 

Levenberg-Marquardt
 

[1,2],
 

Differential Evolution
 

[3], 

and Mesh Adaptive Direct Search [4]. In all of these 

approaches, the inverse problem was solved by finding 

the physical parameters of the unknown system that 

minimize the difference between calculated detector 

responses and measured detector responses.  However, 

the uncertainties in the final calculated parameters of the 

unknown system were not accounted for, despite the fact 

that they are determined by using information from 

detector measurements that contain inherent uncertainties. 

In this work, we apply the generalized linear least-squares 

(GLLS) approach to quantify the uncertainties of the 

calculated parameters.  This approach is an adaptation of 

that used by the TSURFER
 
[5] module of Oak Ridge 

National Laboratory’s SCALE code system, in which the 

GLLS method is used to quantify uncertainties in      in 

critical systems. 

 

APPLICATION OF GLLS TO INVERSE 

TRANSPORT PROBLEMS 

 

Los Alamos National Laboratory’s code INVERSE is 

used to apply various optimization methods to solve 

inverse transport problems. The goal of all of these 

methods is to minimize a    difference between a set of 

measured detector responses and detector responses 

calculated using postulated values for the unknown 

parameters of the system, 
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In Eq. (1),      is the measured value for detector 

response,  ,   ( ) is the value of the detector response 

calculated using a set of postulated parameters  , and      

is the uncertainty in the measurement for response  .  

INVERSE has been shown to successfully find the 

parameters   that minimize    but has previously not 

quantified the uncertainties in these calculated parameter 

values.   

Application of the GLLS method for uncertainty 

analysis in inverse problems is a two-step process. In the 

first step, INVERSE uses an optimization algorithm to 

determine the system parameters that lead to the closest 

match between calculated detector responses and the 

mean values of the measured detector responses. In this 

step, uncertainties are used to formulate    but not to 

compute uncertainties in unknown parameters. In the 

second step, the GLLS approach is used to further reduce 

discrepancies between the calculated and measured 

responses. By adjusting all of the data which contribute 

uncertainty to the system (the calculated values for the 

unknown parameters and the detector measurement 

values) within their uncertainty bands (utilizing sensitivity 

coefficients calculated by INVERSE), the overall 

consistency between calculated and measured values is 

maximized. If the original set of calculated parameters 

and the measured detector responses are consolidated in a 

consistent manner (i.e., correctly accounting for 

uncertainties), then the adjusted responses and adjusted 

physical parameters will be better estimates of the true 

values, because the revised responses and parameters are 

based upon more information than was available in either 

the original calculations or measurements alone. Using 

the additional information in the adjustment process will 

reduce all sources of uncertainty, including the 

uncertainties in the calculated model parameters (prior to 

GLLS adjustment, uncertainties in the model parameters 

are assumed to be 100%).   

 

NUMERICAL TEST PROBLEMS 

 

Except where otherwise stated, the optimization 

algorithm used by INVERSE was a hybridization of 

Differential Evolution and Levenberg-Marquardt, where 

the former is used to establish an accurate initial guess 

and the latter is used for fine-tuning.  This process is 

described in [6].   

 

 Cylindrical Geometry 

 

Consider the sample cylindrical geometry shown in 

Fig. 1. A source of highly enriched uranium (HEU) 

containing 94.73% 
235

U and 5.27% 
238

U is surrounded by 

layers of nickel and aluminum shielding. The source 

region has a radius of 4.00 cm, and the axial locations of 

the source bottom and top are at    2.00 cm and    

6.00 cm, respectively.  All three of these dimensions are 

assumed to be unknown. Uncollided photon fluxes for the 
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four strongest emission lines of uranium (144, 186, 766, 

and 1001 keV) are measured at two locations outside the 

geometry, (r,z) = (9.00 cm, 4.00 cm), and (r,z) = (0.00 

cm, 8.00 cm). Measured detector responses were 

simulated using MCNP with a small number of particle 

histories in order to simulate the uncertainty associated 

with actual measurements. The simulated measurements 

and their uncertainties are given in Table I. 

 

 

 
Fig. 1. Cylindrical Test Geometry. Dimensions shown in 

red are unknown.   

 

 

 

In the inverse analysis step, INVERSE determined 

the source radius to be 4.021 cm and the bottom and top 

of the source to be at 2.012 cm and 5.997 cm. Without 

uncertainty quantification, there is no information on the 

confidence in these values after this first step. After the 

GLLS step, however, we have a high confidence in the 

calculated solution. After GLLS adjustment and 

uncertainty quantification, the uranium radius is 

calculated to be 3.980 ± 0.110 cm, the uranium bottom is 

calculated to be 2.091 ± 0.158 cm, and the uranium top is 

calculated to be 5.993 ± 0.015 cm.  The results for this 

test problem are presented in Table II. 

 

 

 

 

Table I.  Simulated Detector Measurements for the 

Cylindrical Inverse Problem 

Detector Location 1 (   ) = (9.00 cm, 4.00 cm) 

Energy Line (keV) Simulated Measurement 

144  6.72   10
1
 ± 10.46% 

186  6.36   10
2
 ± 8.02% 

766  5.84   10
-1

 ± 4.70% 

1001  2.19   10
0
 ± 2.46% 

Detector Location 2 (   ) = (0.00 cm, 8.00 cm) 

Energy Line (keV) Simulated Measurement 

144  6.63   10
1
 ± 12.32% 

186  1.21   10
3
 ± 8.71% 

766  2.12   10
0
 ± 3.19% 

1001  8.23   10
0
 ± 1.84% 

 

 

 

 

 

Table II.  Results of the Cylindrical Inverse Problem 

 

 

 

Spherical Geometry 

 

Now consider the geometry shown in Fig. 2.  A 

sphere of HEU of radius 5.032 cm is surrounded by a 

shell of stainless steel with inner radius 6.000 cm and 

outer radius 7.000 cm. All three of these radii are 

unknown. The total (4 ) leakage from the system was 

simulated using MCNP, resulting in the detector 

responses shown in Table III.   

Parameter Actual 

Value 

(cm) 

Results of Step 1 

Inverse Analysis 

(cm) 

Results of Step 2  

GLLS Adjustment 

and Uncertainty 

Quantification (cm) 

Radius of 

Uranium 

Cylinder 

4.000  4.021  3.980 ± 0.110  

Bottom of 

Uranium 

Cylinder 

2.000  2.012   2.091 ± 0.158  

Top of 

Uranium 

Cylinder 

6.000  5.997  5.993 ± 0.015  



 
Fig. 2.  Spherical Test Geometry.  All three dimensions 

are unknown. 

 

 

 

Table III.  Simulated Measurements for the Spherical Test 

Geometry 

Energy Line (keV) Simulated Measurement 

144  3.895   10
4
 ± 0.352% 

186  5.770   10
5
 ± 0.110% 

766  8.481   10
2
 ± 4.09% 

1001  3.158   10
3
 ± 2.19% 

 

 

 

Again using the Levenberg-Marquardt method, the 

INVERSE optimization step calculated the source radius 

and inner and outer shield radii to be 5.050 cm, 

15.648 cm, and 16.838 cm, respectively. The source 

radius is calculated with high accuracy, but the shield 

radii are very inaccurate.  The GLLS step quantifies this.  

Following GLLS adjustment and uncertainty 

quantification, the radius of the uranium sphere is 

calculated to be 5.050 ± 0.030 cm, and the inner and outer 

shield walls are calculated to be 15.671 ± 11.455 cm and 

16.852 ± 11.490 cm, respectively. Thus, the GLLS 

method correctly identifies that we should have a high 

confidence in the calculation of the source radius but very 

low confidences in the calculated shield radii. This 

matches physical expectations, because for uncollided 

photons the 4  leakage is highly dependent on the 

thickness of the shield but largely independent of its 

position.  The results for the spherical test problem are 

given in Table IV. 

 

Table IV.  Results of the Spherical Inverse Problem 

 

 

One interesting question to consider is whether the 

calculated uncertainties are dependent on the initial guess 

used by the Levenberg-Marquardt method.  Since the 

GLLS procedure employs the derivatives of the measured 

responses with respect to the values calculated for the 

unknown parameters in the inverse analysis step, any 

initial guess that finds the global optimum will result in 

the same calculated values and uncertainties for the 

unknown quantities.  What if, however, the initial guess is 

poor and the Levenberg-Marquardt method falls into a 

local minimum?  To analyze this question, the spherical 

test problem was run without using Differential Evolution 

to generate an initial guess.  Instead, poor initial guesses 

of 1.000 cm, 2.300 cm, and 3.100 cm were used for the 

source and inner and outer shell radii, respectively.  In 

this case, the inverse analysis step fell into a local 

minimum corresponding to radii of 1.287 cm, 2.69871 

cm, and 2.69872 cm.  In the GLLS step, uncertainties of 

100% were calculated for all three of these 

dimensions.  Thus, GLLS was able to identify that we 

should have no confidence in the calculated 

values.  Further testing is being conducted to study the 

general performance of GLLS at identifying local 

optima.   

 

SUMMARY AND CONCLUSIONS 

 

The generalized linear least-squares method has been 

applied for uncertainty quantification in spherical and 

cylindrical inverse transport problems. The GLLS 

methodology is the second step in a two-step process now 

employed by Los Alamos National Laboratory’s inverse 

transport analysis code INVERSE.  In the first step, 

Parameter Actual 

Value  

(cm) 

Results of Step 1 

Inverse Analysis 

(cm) 

Results of Step 2  

GLLS Adjustment 

and Uncertainty 

Quantification (cm) 

Radius of 

Uranium 

Source 

5.032  5.050  5.050 ± 0.030  

Inner 

Shield 

Radius 

6.000  15.648   15.671 ± 11.455  

Outer 

Shield 

Radius 

7.000  16.838  16.852 ± 11.490  



INVERSE identifies the unknown parameters of the 

radioactive source/shield system without quantifying the 

parameter uncertainties. In the second step, the GLLS 

method is used to further adjust the calculated parameters 

and quantify the uncertainties of these parameters.  In two 

numerical test problems, the GLLS method correctly 

identified the calculated parameters for which we should 

have a high degree of confidence and those for which we 

should have a low degree of confidence. 

The GLLS method assumes that variations in the 

measured responses depend linearly on the physical 

parameters in the system. This assumption leads to a  

computationally inexpensive approach for uncertainty 

quantification. While the linearity assumption was valid 

for the numerical test problems considered here, it is 

likely not valid for all inverse problems. A method of 

nonlinear uncertainty analysis, the Data Assimilation 

technique, was also recently shown to be successful in 

uncertainty quantification of inverse problems [7].  

Therefore, our future work will include determining the 

classes of inverse transport problems where the linearity 

assumption breaks down and examining the application of 

nonlinear uncertainty quantification methods to those 

problems.    
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