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Introduction 

Inverse transport 
• Forward radiation transport solves for the radiation field given a 

definition of the radiation source terms and transport medium 
• Inverse transport solves the problem in the reverse direction: it 

infers radiation source terms and transport medium properties 
from measurements of the radiation field 
 

Technical implementation 
• The approach I’ll describe implements an implicit solution: the 

inverse problem is solved by iterative forward calculations 
• The inverse transport solver basically applies nonlinear regression 

to 1D deterministic transport models 
• It finds a transport model that is simultaneously consistent with 

several radiation measurements, including gamma spectroscopy 
and neutron multiplicity 



Objective 

Infer the configuration of an unknown radiation source from its 
measured radiation signatures 

Source properties 
• Isotopic composition 
• Fissile mass & multiplication 
• Geometric arrangement of radiating and shielding materials 

Signatures 
• Gamma spectrometry 
• Neutron time-correlation and multiplicity counting 

Applications 
• Nonproliferation 
• Counterterrorism 
• Emergency response 

 



Inverse Transport Solver Components 

Radiation transport engine 

Computes the radiation field given a hypothesis for the source 
model – some properties of the model (e.g., dimensions, 
isotopics) are treated as variables in a regression problem 

Detector response functions 

Estimate the detectors’ responses to the computed radiation 
field – currently gamma spectrometers, gross neutron 
counters, and neutron multiplicity counters can be modeled 

Regression solver 

Iteratively modifies the source model variables until the 
predicted detector responses match the actual measured 
responses – a match is found by minimizing the difference 
between the calculation and measurements 



Example Problem 

• The gamma spectrum below exhibits 
features consistent with plutonium 

• The spectrum can be fit (top-right) 
using a simple lumped-parameter 
model with variable isotopics, 
volume, shielding, and age 

• This regression analysis (bottom-
right) provides an approximate 
model of the source 
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1D Radiation Transport Model 

• A one-dimensional transport model (top) 
can be generated from the regression 
analysis on the preceding slide 

• The model shown is displayed as a 
section of a sphere with the center at the 
bottom and outer surface at the top 

• The dimensions of the model layers are 
treated as variables for nonlinear 
regression 

 

• An initial estimate of the gamma 
spectrum (bottom) is generated from 
coupled neutron-photon and electron-
photon transport calculations 

 

• Nonlinear regression can be used to find 
the model dimensions that minimize the 
error in the calculated spectrum 

 



Inverse Solution 



Actual Source 

LLNL 2.4 kg Plutonium Sphere Optimized 1D Model 

The “best-estimate” 1D model preserves the plutonium surface area 
and mass even though the source isn’t perfectly spherical 



Solution using Gammas and Neutrons 

• The gamma spectrum is 
primarily sensitive to the 
outer surface of source 

• A solution based on the 
gamma spectrum alone is 
weakly constrained 
 

• Neutron measurements 
(e.g., count rate) are more 
sensitive to the entire 
volume of source 

• A solution based on 
simultaneous analysis of 
gamma and neutron 
signatures is better 
constrained 

Gammas Only 

Gammas + Neutrons 



Multivariate Inverse Transport 



Multivariate Inverse Transport 

Gamma spectrometry analysis 
• Gamma spectrometry signatures are 

highly specific to material isotopic 
composition and shielding 

• But, due to self-shielding, they are 
mainly characteristic of the source’s 
surface, not its volume 

Neutron multiplicity analysis 
• Neutron multiplicity signatures can be 

used to solve for fissile mass and 
multiplication 

• However, though they are characteristic 
of the entire source volume, they are not 
highly specific to its isotopic composition 

Coupled gamma/neutron analysis 
• The physical phenomena governing these 

two observables are complementary 
• They are coupled because both types of 

particles interact with the same medium 
• A model that fits both observations is 

constrained to match the composition, 
shielding, mass, and multiplication 
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Neutron Multiplicity Counting 

• Neutron multiplicity counting 
accumulates the distribution 
of detection events over: 
• Number of coincident counts 

(multiplicity) 

• Coincidence gate width (time) 

 

• Neutron multiplicity counting 
can be used to estimate 
kinetics parameters: 
• Source strength 

• Multiplication 

• Neutron generation time 

• Leakage probability 



Neutron Multiplicity Distribution 

Multiplication  4.4 
Generation Time  3 ns 

Multiplication  16.3 
Generation Time  9 µs 

4.5 kg Pu sphere in 7.6 cm polyethylene reflector Bare 4.5 kg Pu sphere 



Multiplication Produces Excess Variance 

Multiplication  4.4 Multiplication  16.3 

4.5 kg Pu sphere in 7.6 cm polyethylene reflector Bare 4.5 kg Pu sphere 



Feynman-Y Neutron Multiplicity Statistic 

• Fission chain-reactions produce 
“excess variance” 

• The Feynman-Y measures variance in 
excess of a Poisson distribution 

 

 

 

 

 

• Y vanishes if the counting distribution 
is purely Poisson 

• Y increases with neutron 
multiplication 

• Y is usually measured vs. coincidence 
gate width 
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Effect of Multiplication and Generation Time 

• Y is a measure of the second 
moment (the width) of the 
counting distribution 

• Its asymptotic value tends to 
increase with square of 
neutron multiplication 

 

• Y is a measure of the 
system’s dynamic response 

• Its shape vs. gate width 
tends to evolve more slowly 
with increasing neutron 
generation time 

4.5 kg plutonium 



Computing Neutron Multiplicity Statistics 

• There are several models for neutron multiplicity signatures 

• Point kinetics models: very fast, potentially inaccurate 

• Monte Carlo transport models: very accurate, very slow 

• Deterministic transport models: pretty fast and reasonably accurate 

 

• I implemented a technique to compute the Feynman-Y using 
the same deterministic transport engine that computes the 
gamma spectrum 

• Consequently, both the gamma spectrum and Feynman-Y can 
be computed from the same transport model 

• So, both the gamma spectrum and the Feynman-Y can be 
analyzed by the inverse solver 

 

 



Deterministic Computation of Feynman-Y 

• Muñoz-Cobo, Perez, and Verdú developed a method to 
compute moments of the neutron multiplicity distribution via 
deterministic solution of a generalized form of the Boltzmann 
transport equation (see NS&E #95) 
 

• Their method enables computation of first and higher 
moments (e.g., mean and variance) of the distribution using a 
standard SN deterministic transport solver 
 

• Three calculations are required 
• Forward time-independent, with the usual fixed source 
• Adjoint time-independent, the adjoint source is the detector response 

function 
• Forward time-dependent, with an instantaneous step in the fixed 

source intensity 



Deterministic Computation of Feynman-Y 

• Feynman-Y exhibits two notional features 
• Asymptotic value 

• Shape dependent on coincidence gate width 

• Asymptote 
• Computed from static forward and adjoint transport solutions 

• Accounts for the relative contributions of source and induced fission neutrons 

• The source term for the adjoint problem is the detection response function – 
so, the adjoint flux “weighting function” reflects neutron “importance” to 
detection 

• Shape 
• Computed from the solution to the dynamic forward problem where the 

source term is instantaneously stepped 

• The time-dependent forward flux is folded with the detector cross section 
and impulse response 

• The time-dependent detector response is integrated over gate width 



Feynman-Y Asymptote: Excess Relative Variance 

• Excess variance comes from the source and induced fission 

 

 

• Variance due to source neutron production Q 

 

 

• Variance due to fission neutron production νΣfφ 

 

 

• The importances I0 and I are weighted by φ†, which is the 
solution to the adjoint transport problem using the detector 
response function Σd as the adjoint source Q† 
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Feynman-Y Shape: Dynamic Response 

• The Feynman-Y shape is computed from the solution to 
the forward dynamic step response problem 

 

 

 

• The time-dependent forward flux  is computed in 
response to instantaneous step in forward source term Q 

• The time-dependent flux is folded with the detector 
cross section Σd and impulse response h 

• Then the detector response is integrated over 
coincidence gate width T 
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Step Response Calculation of Feynman-Y 



Experimental Validation 

In order to validate the multivariate 
inverse transport solver, I 
conducted benchmark experiments 
at Nevada Test Site in January 2009 
 
Source 
• 4.5 kg weapons-grade plutonium 

metal sphere (the “BeRP ball”) 
• Reflected by polyethylene up to 6 

inches thick 
 

Detectors 
• High-resolution gamma 

spectrometer 
• Gross neutron counter (SNAP) 
• Portable neutron multiplicity 

counter (nPod) 
 

Polyethylene 

Plutonium 

Pu Source 

Gross Neutron 
Counter 

Neutron Multiplicity 
Counter 

Gamma 
Spectrometer 



Test Source Configurations 



Analysis of Benchmark Experiments 

• The benchmark experiments were analyzed to determine if the 
inverse solver would correctly infer the source configuration in 
each case 

• The objective was to correctly estimate plutonium mass, 
multiplication, and reflector thickness 

• Each case was analyzed with the same starting model 
• 1 kg plutonium 

• 1 cm iron 

• 1 cm polyethylene 

• The solver fit the thickness of each model layer to the 
measurements 
• Gamma spectrum 

• Neutron count rate (with the SNAP cover both on and off) 

• Neutron multiplicity distribution variance-to-mean ratio (Feynman-Y) 



Initial Guess vs. Measurement 
1.5 inch Reflector 



Inverse Solution vs. Measurement 
1.5 inch Reflector 



Validation Test Results 

Reflector 
Plutonium Mass (kg) Neutron Multiplication Reflector Thickness (cm) 

Estimated Actual Estimated Actual a Estimated Actual 

None 4.3 

4.5 

4.4 4.5 N/A b 0.0 

0.5 inch 4.6 5.5 5.8 0.8 1.3 

1.0 inch 4.6 7.0 7.8 1.9 2.5 

1.5 inch 4.3 9.9 10.4 4.2 3.8 

3.0 inch 4.4 15.3 16.3 7.9 7.6 

6.0 inch 4.4 16.4 17.1 15.0 15.2 

a The “actual” neutron multiplication was estimated using MCNP5. 
b For the bare case, no reflector was included in the initial model. 

• The solution time was 2 minutes or less using a standard laptop 
• Solution time increased with reflector thickness 



Ongoing Work 



Accelerating Deterministic Transport Calculations 

• The most time-consuming 
calculation is solution of the forward 
time-dependent neutron transport 
problem 

 

• I worked with University of Florida 
and Georgia Tech to develop a 
method to collapse neutron cross-
sections using adjoint flux weighting 

• It collapses energy groups in spectral 
regions that are “unimportant”, i.e., 
that contribute little to the neutron 
detector response 

 

• We were able to reduce the 
computational time by a factor of 2 
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Combining Multiple Detector Responses 

• Nonlinear regression minimizes the error 
between a model’s prediction and the 
actual observation 

• Standard regression methods employ an 
error metric that treats observations as if 
they are mutually independent 

• However, errors are correlated 

• Error covariance has two classes: 
• Experimental noise covariance: Correlation 

between random variations in the observation – 
dominates the error metric near the solution 

• Model error covariance: Correlation between 
systematic errors in the model prediction – 
dominates the error metric far from the solution 

• My colleagues at Sandia and I developed 
methods to include experimental noise 
and model error covariance in the 
nonlinear regression analysis 
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Effect of Accounting for Correlated Model Errors 

• Simple example problem: Cs-137 
shielded by lead 

• Variables: 

• Cs-137 activity 

• Lead thickness 

 

• The solution is degenerate: different 
solutions fit the data equally well 

• Gamma emission is proportional to 
source strength ÷ shield thickness 

 

• Errors in the shape of the continuum 
are correlated across many channels 

• Accounting for error cross-
correlation yields a unique solution 

Without covariance 

With covariance 



Validating Monte Carlo Simulations 

• MCNPX-PoliMi is a modification of 
MCNPX designed for simulation of 
time-correlation and multiplicity 
measurements 

• University of Michigan and I used the 
BeRP ball benchmark experiments to 
validate MCNPX-PoliMi 

• We found that MCNPX-PoliMi 
consistently over-estimated the 
measured neutron multiplicity 
distribution 

• The over-estimation increased with 
neutron multiplication 

• This result was independently 
confirmed by LANL using a different 
code 
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Potential Causes of Errors 

• We were able to eliminate several 
possible sources of error in the 
MCNPX-PoliMi calculations 

• Poly reflector models 

• Multiplicity counter model 

• Source-detector distance 

• Detector dead-time 

• Plutonium density 

 

• None of these was the cause of the 
error 

 

• After eliminating all the preceding 
possible causes, we began to 
investigate the nuclear data for 239Pu 
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Evaluation of Benchmark Experiments 

• We found that a very small 
change (≈1%) in the 239Pu 𝜈  
significantly reduced the 
calculation error in all six cases 
• The ENDF-VII evaluation of 239Pu 𝜈  

is based on a single fast critical 
experiment – Jezebel 

• The 1% correction is comparable 
to the uncertainty in the ENDF-VII 
evaluation of 239Pu 𝜈  

• We’ve briefed ICSBEP and NCSP on 
our findings, and we’ve contacted 
the 239Pu evaluation committee 

BeRP Ball 
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blue: experiment, red: calculation 



Conclusion 



Summary 

• Inverse radiation transport methods can be applied to infer 
the configuration of an unknown radiation source from its 
measured signatures 

• The inverse solver presented in this talk employs 1D 
deterministic transport models and point detector response 
functions embedded in a nonlinear regression solver 

• The solution produces a “best-estimate” model of the source 
that is consistent with the measured radiation signatures 

• The inverse solver is capable of combining the analysis of 
multiple complementary and correlated measurements, e.g., 
gamma spectrometry and neutron multiplicity counting 

• It has been validated against benchmark experiments with 
special nuclear material 



Future Work 

• Extend the solver framework to enable a more general 
treatment of the forward calculations 
• Handle alternative model forms 
• Introduce new types of model variables 
• Employ alternative forward transport solvers 
• Analyze new types of detectors and observables 

 
• Investigate different types of inverse solvers 
• Alternative gradient estimators (e.g., ones that use an adjoint solution 

to estimate sensitivity) 
• Derivative-free solvers for discrete variables 
• Bayesian inference solvers that produce a solution that is characterized 

by a distribution on the variables, instead of a single best estimate 

 
• Evaluate the stability of the inverse solution 
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Supplemental Slides 



Radiation Transport Engine 

The radiation transport engine performs deterministic coupled neutron-photon 
and electron-photon transport calculations to estimate: 
 
• Neutron leakage current from: 
• Spontaneous fission 
• (α, n) reactions 

• Discrete and continuous photon leakage current from: 
• Radioactive decay (i.e., α, β-, β+/EC, IT, IC, etc.) 
• Neutron capture and inelastic scatter 
• Spontaneous and induced fission and (α, n) reactions 
• Electron-bremsstrahlung 
• Fluorescence x-rays 

• PARTISN solves the neutron transport problem 
• ONELD solves the photon and electron transport problems 

• The transport models are restricted to one spatial dimension 
• The solver is designed to analyze a single gamma spectrum; it’s hard to infer a unique 

model geometry with more than one dimension from a single spectrum 
• The solver is designed to permit inexpert users to rapidly create and optimize a model 



Detector Response Functions 

Point detector response functions transform the neutron and photon current 
impinging on the detector to a computed response 

Gamma spectrometers 
• Solid angle 
• Material (photoelectric capture, Compton scatter, and pair production 

probabilities) 
• Detector size and shape 
• Energy calibration and resolution 
• Shielding and filters 
• Near- and far-field scattering 

Gross neutron counters 
• Solid angle and intrinsic efficiency 

Neutron multiplicity counters 
• Solid angle and intrinsic efficiency 
• Dynamic response 
• Requires additional solution of adjoint and dynamic forward neutron transport 

problems 



Regression Solver 

A Levenberg-Marquardt (LM) regression solver iteratively modifies the transport 
model variables (e.g., dimensions, isotopic composition) to minimize the 
difference between the calculated and measured detector responses 

Error metric 

𝜒2 =  
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• Variance-weighted sum of squared errors between model and experiment (1st 
term) 

• Constraints are implemented by penalizing the cost function when a variable 
deviates significantly from a user-assigned nominal value (2nd term) 

Gradient estimation 
• The local gradient is estimated by forward difference calculations that perturb 

each variable; requires P + 1 transport calculations per iteration 

Stopping criteria 
• The solver runs for a fixed number of iterations; it can be stopped by the user 



Forward vs. Adjoint Flux 
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• Forward transport: rate of change = source + production 
– losses 

 

• Relationship between forward and adjoint 

 

• Adjoint transport reverses time, direction, and change in 
energy 

 

• Adjoint flux represents importance of source neutrons to 
interaction embodied in adjoint source 
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Static Forward and Adjoint Solutions 

Forward Flux Adjoint Flux 

4.5 kg Pu sphere in 3.8 cm polyethylene reflector 


