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Denovo Capabilities

• State of the art transport methods
– 3D, non-uniform, regular grid SN
– Multigroup energy, anisotropic Pn

scattering
– Forward/Adjoint
– Fixed-source/k-eigenvalue
– 6 spatial discretization algorithms

• Linear and Trilinear discontinuous 
FE, step-characteristics, theta-
weighted diamond, weighted 
diamond + flux-fixup

– Parallel first-collision
• Analytic ray-tracing (DR)
• Monte Carlo (DR and DD)

– Multiple quadratures
• Level-symmetric
• Generalized Legendre Product
• Galerkin

• Modern, Innovative, High-Performance 
Solvers

– Within-group solvers
• Krylov (GMRES, BiCGStab) and source iteration
• DSA preconditioning (SuperLU/ML-

preconditioned CG/PCG)

– Multigroup solvers
• Transport Two-Grid upscatter acceleration of 

Gauss-Seidel
• Krylov (GMRES, BiCGtab)

– Eigenvalue solvers
• Power iteration (with rebalance)

– CMFD in testing phase

• Krylov (Arnoldi)
• Shifted-inverse iteration in development

Power distribution in a BWR assembly
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Denovo Capabilities

• Parallel Algorithms
– Koch-Baker-Alcouffe (KBA) wavefront

decomposition
– Domain-replicated (DR) and domain-

decomposed first-collision solvers
– Multilevel energy decomposition in 

development
– Parallel I/O built on SILO/HDF5

• Advanced visualization, run-time, and 
development environment

– 3 front-ends (HPC, SCALE, Python-
bindings)

– Direct connection to SCALE geometry 
and data

– Direct connection to MCNP input 
through ADVANTG

– HDF5 output directly interfaced with 
VisIt

– Built-in unit-testing and regression 
harness with DBC

– Emacs-based code-development 
environment

– Support for multiple external vendors
• GSL, BLAS/LAPACK, TRILINOS (required)
• BRLCAD, SUPERLU/METIS, SILO/HDF5 

(optional)
• MPI (toggle for parallel/serial builds)
• SPRNG (required for MC module)
• PAPI (optional instrumentation)

2010 INCITE Award
Uncertainty Quantification for Three 
Dimensional Reactor Assembly 
Simulations, 8 MCPU-HOURS

2010 ASCR Joule Code
2009-2011 2 ORNL LDRDs

> 5M CPU hours on Jaguar with 2 bugs
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Parallel Visualization
Using VisIt, Denovo is able to make 3D visualizations and perform data 
analysis on massive data sets. 

ITER component performance/shielding

PWR900 reactor core benchmark
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• Operator form of the transport equation,

• The SN method is a collocation method in angle.
– Energy is discretized in groups.
– Scattering is expanded in Spherical Harmonics.
– Multiple spatial discretizations are used (DGFEM, 

Characteristics, Cell-Balance).

Discrete Ordinates Methods
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Traditional SN Solution Methods

• Traditional SN solutions are divided into outer iterations 
over energy and inner iterations over space-angle.

• Generally, accelerated Gauss-Seidel or SOR is used for 
outer iterations.

• Eigenvalue forms of the equation are solved using 
Power Iteration

• In Denovo we are motivated to look at more advanced 
solvers
– Improved robustness
– Improved efficiency
– Improved parallelism
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Krylov Methods

• Krylov methods are more robust than stationary solvers
– Uniformly stable (preconditioned and unpreconditioned)
– Compress space in an integral sense

• More efficient
– Source iteration spectral radius

– Gauss-Seidel spectral radius

• There is no coupling in Krylov methods
– Gauss-Seidel imposes coupling between rows in the matrix
– Krylov has no coupling; opportunities for enhanced 

parallelism
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Physics Dictates the Solution
• The Gauss-Seidel spectral radius for uniform graphite is 0.9812 = slow 

convergence

• Systems that are block-dense in energy are sparse in energy-space-angle

• Ideal candidates for Krylov methods

Iron-D2O-Graphite block energy S matrix Iron-D2O-Graphite energy-space-angle S matrix
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Krylov Methods for Discrete Ordinates

Gauss-Seidel Iteration in energy

reduces to a series of one-group solves 
(within-group inner iterations)

up and down-scatter rolled into source

inners have the general form 
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Reformulating the Problem

operate by DL-1 to get Source Iteration

which is really fixed-point (Richardson) 
iteration

iteration matrix for Source Iteration

put in form Ax = b, we can use non-
stationary iterative methods (Krylov 
subspace) to solve this linear 
problem

The inversion of L is done using a wavefront solver that is 
implemented by solving for ϕ in the direction of particle flow 
Transport Sweep.
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Schur Complement

The Schur Complement for block L is

The SN equations can be written as a 2 2 block-diagonal system, 

And the reduced space solution results

Now we have a system where we invert a (t t) and (n n) system instead 
of one (n+t) (n+t) system where t is dimensioned by the moments and n
by angles.
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Formulation of the Solution

1. Calculate the right-hand side (one transport sweep)

1. Apply the operator to the Krylov iteration vector until 
convergence (one transport sweep per Krylov 
iteration)

1. A pre-conditioner can also be applied
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Krylov and the Multigroup Problem

• The full energy system can be solved by Krylov iteration 
as well

• This has an identical form as the within-group equations 
with the exception that the iteration (Krylov) vector is 
now a function of energy
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Eigenvalue Problem

• The eigenvalue problem has the following form

• Expressed in standard form

• The traditional way to solve this problem is with Power 
Iteration

Energy-indepedent

Energy-dependent
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Advanced Eigenvalue Solvers

• We can use Krylov (Arnoldi) iteration to solve the 
eigenvalue problem more efficiently

• Shifted-inverse iteration is also being developed (using 
Krylov to solve the shifted multigroup problem in each 
eigenvalue iteration)

Matrix-vector multiply and sweep

Multigroup fixed-source solve
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Residual Solvers

• In methods that require nested iteration (upscatter, 
eigenvalue, etc), Denovo solves the residual equation

• Then, the tolerance is relaxed

• Thus, as the outer iterations near convergence, the 
inner solutions require less work because the residual 
is within the specified tolerance
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Solver Taxonomy Eigenvalue Solvers

Power iteration
Arnoldi

Shifted-inverse

Multigroup Solvers

Gauss-Seidel
Residual Krylov

Gauss-Seidel + Krylov

Within-group Solvers

Krylov
Residual Krylov
Source iteration

The innermost part of each solver are 
transport sweeps

“It’s turtles all the way down…”
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Advanced Solvers

• Preconditioning Krylov with DSA is unconditionally 
stable

• Excellent results for high scattering and/or tight 
convergence

• Regular GMRES performs very well without acceleration 
for most problems

Method Acc. SN GS Iterations Normalized
Time

Gauss-Seidel - 175 1.000

Transport TG 8 15 0.113

Transport TG 4 14 0.097

Transport TG 2 13 0.086

• Transport two grid (TG) acceleration of upscatter is 
highly efficient and stable
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KBA Algorithm

KBA is a direct-inversion algorithm

Start first angle in (-1,+1,-1) octant

Begin next angle in octant

sweeping in direction of particle flow
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Parallel Performance

Angular Pipelining
• Angles in ± z directions are pipelined
• Results in 2×M pipelined angles per octant
• Quadrants are ordered to reduce latency

6 angle pipeline (S4; M = 3)
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KBA Reality

KBA does not achieve close to 
the predicted maximum

• Communication latency dominates as the block size becomes small
• Using a larger block size helps achieve the predicted efficency but,

– Maximum achievable efficiency is lower
– Places a fundamental limit on the number of cores that can be used for any 

given problem
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Efficiency vs Block Size
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Overcoming Wavefront Challenge

• This behavior is systemic in any wavefront-type 
problem
– Hyberbolic aspect of transport operator

• We need to exploit parallelism beyond space-angle
– Energy
– Time

• Amortize the inefficiency in KBA while still retaining 
direct inversion of the transport operator
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Multilevel Energy Decomposition

The use of Krylov methods to solve 
the multigroup equations effectively 
decouples energy
– Each energy-group SN equation can be 

swept independently
– Efficiency is better than Gauss-Seidel
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Sources for Transport Sweeps

• In each energy set, the sweep source is coupled to all 
other sets

Decomposition over all groups Decomposition over upscatter groups
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Multilevel Summary

• Energy decomposed into sets.
• Each set contains blocks constituting the entire spatial 

mesh.
• The total number of domains is

• KBA is performed for each group in a set across all of 
the blocks.
– Not required to scale beyond O(1000) cores.

• Scaling in energy across sets should be linear.
• Allows scaling to O(100K) cores and enhanced 

parallelism on accelerators.
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An Example

• We have seen good performance on 15,000 cores with
– 250M cells
– S16
– P3

• To utilize the whole machine for a 44 group reactor 
calculation
– 10 sets of 4 groups each (+4 additional groups in first 4 sets)
– problem can now utilize 150,000 cores
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Fixed-Source Problems

• Running very large urban models for national 
defense applications

– 1.35×1014 total unknowns
– Point-source located in center of model
– Large streaming/near-void regions and ducts

• Ray-effect mitigation is required
– First-collision source
– Problem scale makes implementation difficult

• Too many cells to replicate
• Too many cores to efficiently use domain 

decomposition
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First-Collision Methods

• Denovo provides 2 first-collision methods for alleviating 
ray-effects
– Analytic ray-tracing

• Point sources
• Angular dependence
• Domain replication

– Monte Carlo
• Point and distributed sources
• Angular dependence
• Domain replication
• Domain decomposition
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Monte Carlo First Collision Source

• As expected, DR Monte Carlo provides linear scaling
• DD scaling using the Urbatsch-Evans Milagro asynchronous transport algorithm still 

suffers from bad load imbalance
• We are looking at two methods for improving uncollided flux calculations

• Reduced grid replication
• Multilevel (in particles)
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Improved Parallel First-Collision 
Methods

Use a reduced, replicated grid that still preserves 
replication for each domain

• Maximum replicated grid is 5 5 
instead of 9 9

• Saves ~3.25 memory in ideal case 
(centered source).

• Non-centered sources will not realize 
as large a savings.

• Simple to implement.
• Further savings could be obtained by 

moving to a non-orthogonal mesh.
- More expensive ray-tracing.
- More expensive gathers during 

setup.
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Summary

• We are hopeful that multilevel energy-space-angle 
decompositions will allow scaling of SN solutions to 
O(100K) cores and beyond

• Multilevel energy parallelism is allowing implementation 
of an optimized sweep kernel on GPUs as part of the 
OLCF-3 effort

• Reduced-grid domain replication is being implemented 
to allow the use of first-collision sources (Monte Carlo 
and ray-tracing) on massive urban models
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Questions?
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