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Abstract-This paper presents a modulation extension control al-
gorithm for hybrid cascaded H-bridge multilevel converters. The 
hybrid cascaded H-bridge multilevel motor drive using only a 
single dc source for each phase is promising for high-power mo-
tor drive applications since it can greatly decrease the number of 
required dc power supplies, has high-quality output power be-
cause of its high number of output levels, and has high conver-
sion efficiency and low thermal stress because it uses a 
fundamental frequency switching scheme. However, one disad-
vantage of the 7-level fundamental frequency switching scheme is 
that its modulation index range is too narrow when the capaci-
tor’s voltage balance is maintained. The proposed modulation 
extension control algorithm can greatly increase the capacitors’ 
charging time and decrease their discharging time by injecting 
triplen harmonics to extend the modulation index range of the 
hybrid cascaded H-bridge multilevel converters to conquer this 
problem. Therefore, the proposed modulation extension control 
algorithm has not only a wider modulation index range but also 
all the advantages of inherent high output power quality, low 
output switching frequency and high conversion efficiency, and 
high-speed capability. 

I. INTRODUCTION 

The multilevel converter is a promising power electronics 
topology for high-power motor drive applications because of 
its low electromagnetic interference (EMI) and high efficiency 
with a low-frequency control method [1–5]. Among the multi-
level converter topologies, the cascaded multilevel converter 
with separate dc sources closely fits the needs of all-electric 
vehicles because it can use the onboard batteries or fuel cells 
to generate a sinusoidal voltage waveform to drive the main 
vehicle traction motor. 
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Traditionally, each phase of a cascaded multilevel converter 
requires n dc sources for 2n + 1 levels. For many applications, 
to get many separate dc sources is difficult, and having too 
many dc sources will require many long cables and could lead 
to voltage unbalance among the sources. To reduce the num-
ber of dc sources required when the cascaded H-bridge multi-
level converter is applied to a motor drive, a hybrid cascaded 
multilevel converter has been proposed which only uses a sin-
gle dc source for each phase. This hybrid cascaded multilevel 
converter has the advantages of higher speeds with a low 
switching frequency (especially useful for electric/hybrid elec-
tric vehicle applications), which offers inherent low switching 
losses and high conversion efficiency [6–7]. However, a dis-
advantage of the hybrid cascaded multilevel converter is that it 
has a narrow modulation index range when a 7-level funda-
mental frequency switching scheme is used, and this disadvan-
tage limits its highest output voltage when maintaining the 
capacitors’ voltages. To conquer this problem, this paper pro-
poses a modulation extension control algorithm to extend the 
modulation index range for hybrid cascaded H-bridge multi-
level converters. The reason for a narrow modulation index 
range is the longer discharging time and shorter charging time 
when the hybrid cascaded multilevel converters output high 7-
level voltages. The proposed modulation extension control 
algorithm can greatly increase the capacitors’ charging time 
and decrease their discharging time by injecting triplen har-
monics to extend the modulation index range of the hybrid 
cascaded H-bridge multilevel converters to conquer this prob-
lem. Therefore, the proposed modulation extension control 
algorithm has not only a wider modulation index range but 
also all the advantages of inherent high output power quality, 
low output switching frequency, high conversion efficiency, 
and high-speed capability. This control scheme is especially 
suitable for fuel cell vehicle motor drive applications. Simula-
tion and experiments verified the proposed control algorithm 
with the desired features. 

 



II. CONTROL OF HYBRID CASCADED H-BRIDGE MULTILEVEL 
CONVERTER WITH 7-LEVEL OUTPUT VOLTAGE 

A 7-level hybrid cascaded H-bridge multilevel converter has 
two H-bridges for each phase. One H-bridge is connected to a 
dc source and another is connected to a capacitor, as shown in 
Fig. 1. The dc source for the first H-bridge (H1) could be a 
battery or fuel cell with an output voltage of Vdc, and the dc 
source for the second H-bridge (H2) is the capacitor voltage, to 
be held at Vc. The output voltage of the first H-bridge is de-
noted by v1, and the output of the second H-bridge is denoted 
by v2 so that the output voltage of the cascaded multilevel 
converter is 

 
v(t) = v1(t) + v2(t)  .                                                    (1) 

 

 
Fig. 1. Topology of a single phase of the proposed multilevel con-
verter with a single dc source for the first level and capacitors for 

other levels. 
 
 

By opening and closing the switches of H1 appropriately, 
the output voltage v1 can be made equal to −Vdc, 0, or Vdc 
while the output voltage of H2 can be made equal to −Vc, 0, or 
Vc by opening and closing its switches appropriately. There-
fore, the output voltage of the converter is a combination of 
Vdc and Vc which can have nine possible values −(Vdc+Vc), 
−Vdc, −(Vdc−Vc), −Vc, 0, Vc, (Vdc−Vc), Vdc, (Vdc+Vc).  

To regulate the capacitor’s voltage to guarantee the output 
power quality, a 7-level fundamental switching scheme has 
been proposed. This switching scheme uses a possible cycle to 
output −(Vdc+Vc), −Vdc, −(Vdc−Vc), 0, (Vdc−Vc), Vdc, (Vdc+Vc) 
voltage levels; and the dc source is charging the capacitor si-
multaneously when output is −(Vdc−Vc) and (Vdc−Vc), which is 
called a charging cycle. Similarly, the switching scheme uses 
another possible cycle to output −(Vdc+Vc), −Vdc, −Vc, 0, Vc, 
Vdc, (Vdc+Vc) voltage levels; and the capacitor can be dis-
charged simultaneously, which is called a discharging cycle. 
Then the capacitors’ voltage can be regulated by charging and 
discharging when the multilevel converter is running. When 
Vc = Vdc/2 is chosen, the output voltage waveform is a 7-level 
waveform. Although the power width modulation (PWM) 
control method is popular for inverters regardless of their to-
pologies [8–13], 7-level fundamental frequency switching 

control is a good method for the hybrid cascaded H-bridge 
multilevel converter, which is shown in Fig. 2. This switching 
scheme uses three switching angles θ1, θ2, and θ3 to output a 
voltage waveform and to eliminate the low-order 5th and 7th 
harmonics [14–17]. The solutions of the switching angles can 
be found by many methods [18–21], such as the resultant 
method [18–19]. For the 7-level hybrid cascaded H-bridge 
motor drive control, the output voltage can be represented by 
the mathematical model  
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For convenience, here the modulation index is defined as 
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Fig. 2. 7-level equal step output voltage waveform. 

 
From Fig. 2, it can be seen that the capacitor is discharging 

when the inverter outputs voltage −(Vdc+Vc) and (Vdc+Vc) re-
gardless of charging cycle or discharging cycle. During a cy-
cle, if the discharging amount is greater than the charging 
amount, then the capacitor’s voltage balance is not possible.  
For a high modulation index range of 7-level fundamental 
frequency switching control, the discharging amount is greater 
than the charging amount, which renders the capacitor’s volt-
age regulation control impossible. 

In addition, the charging amount and discharging amount 
are related to the power factor angle. This can be seen from 
Fig. 3, which shows the charging and discharging situation 
with different power factor angles (lead or lag).  
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Fig. 3. Capacitor charging and discharging time with different load 
current without triplen harmonic voltage compensation. 

 

III. MODULATION INDEX EXTENSION CONTROL BY INJECTING 
TRIPLEN HARMONICS   

     To decrease the discharging time and increase the charging 
time, a new modulation extension control method of injecting 
triplen harmonic voltages into the 7-level output voltage is 
proposed. A triplen harmonic which can be represented by 
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is injected into the 7-level  output voltage, and the output volt-
age waveform is changed (shown in Fig. 4). The triplen har-
monic voltages will automatically cancel in the line-line 
voltages and will not change the fundamental frequency con-
tents. Therefore, here, the only effect is to change the charging 
period and discharging period. From Fig. 5, it can be seen that 
the original long discharging period has been changed into 
two short discharging periods. 

To analyze the voltage balance situation due to capacitor 
charging and discharging in detail, define the charging amount 
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and discharging amount               
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Then in a whole cycle, the net accumulation amount is defined 
as       

ingdischingchonaccumulati QQQ argarg −=
                                

(7) 
 
  Therefore, if capacitor voltage balance is possible, then the 

net accumulation amount must be greater than zero in a whole 
cycle. Based on this analysis, the net accumulation amount is 
calculated for the 7-level output voltage cases with and with-
out the triplen harmonic compensation method.     
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Fig. 4. Output voltage waveform with triplen harmonic compensation. 

 

0

π
2π

Switching angle

Output voltage
Load current with π/6 lead angle

Load current with π/6 lag angle
In-phase load current

 
Fig. 5.  Capacitor charging and discharging time with different load 

current with triplen harmonic voltage compensation. 
   

If only a 7-level fundamental frequency switching scheme is 
used to regulate the capacitor’s voltage, the accumulation 
curve is shown in Fig. 6. The highest modulation index that 
can balance the capacitor’s voltage is around 1.54. 
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Fig. 6.  Accumulation curve without triplen harmonic voltage com-

pensation. 
 

If the triplen harmonic voltage compensation method is 
used, the accumulation curve is shown in Fig. 7. The highest 
modulation index that can balance the capacitor’s voltage is 
around 2.  
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Fig. 7.  Accumulation curve with triplen harmonic voltage compensa-

tion. 
 

If Figs. 6 and Fig. 7 are compared, it can be seen that the 
triplen harmonic compensation method can increase the 
modulation index range by 33% for a hybrid cascaded H-
bridge multilevel converter to balance the capacitors’ voltage.  
 

IV. EXPERIMENT IMPLEMENTATION AND VALIDATION 

 
To experimentally validate the proposed hybrid cascaded H-

bridge multilevel motor drive control scheme, a prototype 
three-phase cascaded H-bridge multilevel converter has been 
built using metal oxide semiconductor field effect transistors 
(MOSFETs) as the switching devices (Fig. 8). Three 48-V dc 
power supplies (one for each phase) feed the motor drive. A 
real-time variable-output voltage, variable-frequency three-
phase motor drive controller based on an Altera FLEX 10K 
field programmable gate array (FPGA) is used to implement 
the control algorithm. For convenience of operation, the 
FPGA controller is designed as a card to be plugged into a 
personal computer, which uses a peripheral component inter-
connect (PCI) bus to communicate with the microcomputer. 
The FPGA controller board will be based on a PCI bus. To 
maintain the capacitor’s voltage balance, a voltage sensor is 
used to detect the capacitor’s voltage and feed the voltage 
signal into the FPGA controller. A 1-kW induction motor is 
used as the load of the inverter.  

To verify the proposed voltage balance control algorithm, 
the modulation index m=1.97 is chosen for the experiment. 
The phase voltage waveform and phase current waveform are 
shown in Fig. 9. The experiment shows that the capacitor’s 
voltage can be regulated at 24 V, which is half of the dc 
source voltage. 

Fig.10 shows the normalized fast Fourier transform (FFT) 
analysis of the phase voltage, and Fig. 11 shows the normal-
ized FFT analysis of the phase current. From the voltage spec-
trum distribution in Fig. 10, it can be seen that the5th and 7th 
harmonic voltages are near zero and the triplen harmonic volt-
ages (such as the 3rd, 9th etc.) are not zero. From the current 
spectrum distribution shown in Fig. 11, it also can be seen that 
it has no 5th or 7th current harmonics, no triplen current har-
monics. 

 

Fig. 8. The 10-kW multilevel inverter prototype. 
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Fig. 9.Experimental voltage and current waveforms with a motor load 
and regulated capacitor’s voltage. 
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Fig. 10. Normalized FFT analysis of phase voltage shown in Fig. 9. 
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Fig. 11. Normalized FFT analysis of phase current shown in Fig. 9. 

 
Further experiments show that for a high modulation index 

range, a 7-level output voltage waveform with triplen har-
monic compensation can balance the capacitors’ voltages; but 
a 7-level output voltage waveform without triplen harmonic 
compensation cannot balance the capacitors’ voltages. 

In theory, the voltage balance can reach a modulation index 
m=2.0. For actual experiments, though, because of the switch-
ing loss, the conduction loss of the switching devices, and the 
wire copper loss of the circuit, the modulation index for the 
capacitor’s voltage balance is a little less than 2.0. In the ex-
periments, if the modulation index is higher than 1.97, it is 
shown that the capacitor’s voltage is maintained at a lower 
voltage instead of half of the dc source voltage.   
 

V. CONCLUSIONS  

This paper proposed a new modulation extension control al-
gorithm for 7-level hybrid cascaded H-bridge multilevel con-
verters that use only one power source for each phase to 
balance the capacitors’ voltages while producing the desired 
7-level voltage waveforms. It can be derived from the simula-
tion and experiment results that this control algorithm can 
balance the capacitors’ voltages while producing higher fun-
damental voltages with specific low-order harmonics elimi-
nated. This control method can effectively extend the 
modulation range to output a higher fundamental frequency 
voltage compared with the traditional 7-level fundamental 
frequency switching scheme. It is promising for high-power 
motor drive applications. 
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